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Fig. 7 Percentage drag reduction on the ellipsoid with coating.

9

10

11

12

13

14

15

16

0 200 400 600 800 1000 1200
time(secs)

P
er

ce
n

ta
g

e 
D

ra
g

 R
ed

u
ct

io
n

(%
)

Re=0.55x106

AOA=0 degrees

Fig. 8 Percentage drag reduction as a function of time.

period of time and is allowed to dry. The results presented here are
for models that have remained submerged for 1100 s.

Conclusions
A hydrophobic coating/skin was tested to quantify its effective-

ness as a hydrodynamic drag reduction device. PIV performed on
a flat plate, with and without the coating, showed a 20% drag re-
duction induced by the coating. Drag measurement tests, conducted
on a 3-ft-long ellipsoid model in the water tunnel, showed 14 and
10% drag reductions at 0- and 8-deg model angle of attack, respec-
tively. Drag reduction levels drop with time, apparently approaching
a limiting value after 15 min.
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Introduction

A N accurate simulation of acoustic scattering and radiation from
arbitrary bodies is one of the important goals in the field of

computational aeroacoustics. These problems require not only a
high-resolution numerical scheme but also accurate boundary treat-
ment. In this Note, we develop a high-order wall boundary treat-
ment that can be readily applied with a high-order finite difference
in computational aeroacoustics.

There are mainly three types of approaches for treating complex
geometries. The first is to use a conventional structured grid, the
second is to make use of unstructured grids that create irregular
numerical interfaces all over the physical domain, and the last type is
to use so-called Cartesian grid methods.1−11 Most of these schemes
have been developed for steady-state, transonic flow or low-order
accuracy. However, acoustic waves are intrinsically unsteady, and
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their amplitudes are several orders smaller than the mean flow with
the frequencies generally in the level of kilohertz. As a result, not
only high-order numerical scheme but also high-order boundary
conditions are required for simulating aeroacoustic phenomena.12

The objectives of this study are twofold. The main objective is
to present a new optimized high-order boundary treatment using
Cartesian coordinates and to examine the effectiveness of interpo-
lation for the ghost point near the boundary from the standpoint of
a wave number. The second objective is to present a new optimized
interpolation for a variable or its derivatives in the neighborhood of
grid points with high-order accuracy. The method proposed in this
Note provides the high-order accuracy required in the interpolation
of physical values.

Numerical Methodology
Consider the approximation of the unknown value X (x j , η) at

x j + η�x of a uniform grid where −1 < η < 1 and �x = x j − x j − 1.
Suppose M values of f to the right and N values of f to the left
are used to form the unknown value X (x j , η), that is, f (x j + η�x)
or ∂ f (x j + η�x)/∂x if the accuracy of finite difference scheme is
retained up to the 4th order:

X (x j , η) =
M∑

k = −N

ak f j + k (M + N + 1 = 7) (1)

To determine the coefficients ak of Eq. (1), expand the right-hand
side of Eq. (1) in a Taylor series of �x by equating coefficients of
the same powers of �x up to fourth-order accuracy:
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(2)

If two coefficients to be used for the optimizing pro-
cess are left when the matrix C j , j = 1, . . . , 7, that is, C j =
{m1 j m2 j m3 j m4 j m5 j }T is j th column of left-hand-side (LHS)
matrix Ai j , 1 ≤ i ≤ 5, 1 ≤ j ≤ 7, and right-hand-side (RHS) matrix
of equation is RHSi (η), the preceding equations are represented into
the following matrix form:

C2a2 + C4a4 + C5a5 + C6a6 + C7a7 = −C1a1 − C3a3 + RHSi (η)

(3)

When the matrices K = {C2 C4 C5 C6 C7} and Y =
{a2 a4 a5 a6 a7}T are defined and the inverse matrix of K is mul-
tiplied by each side of Eq. (3), the following equation is obtained:

Y = −K −1C1a1 − K −1C3a3 + K −1RHSi (η), i = 1, . . . , 5 (4)

Then two unknown variables are left. The unknown coefficients are
determined by requiring the Fourier transform of the values on the
RHS of Eq. (1) to be a close approximation of the values on the
LHS.

If f (x) is given as a periodic function, its Fourier transform is
f̃ (α), where α is the wave number. Here f (x) is related to f̃ (α) by
the inverse Fourier transform formula

f (x) =
∫ ∞

−∞
f̃ (α) exp(iαx) dα (5)

In Eq. (5), the absolute value and the argument of f̃ (α) are de-
noted by A(α) and φ(α). Therefore, Eq. (5) may be rewritten as

f (x) =
∫ ∞

−∞
A(α) exp{i[αx + φ(α)]} dα (6)

A wave number analysis of large stencil finite difference
schemes13,14 has shown that finite difference schemes are accu-
rate only over a limited band of low wave numbers or large wave-
lengths. We will also consider an interpolation process that remains
high-order accurate over a required wave number range, that is,
0 ≤ α�x ≤ κ . Here, waves with unit amplitude over the desired band
of wave numbers are considered, that is, A(α) = 1.

The Fourier transforms of the LHS and RHS of Eq. (1) are

X̃(α�x, η) =
[

M∑

k = −N

ak exp(iαk�x)

]
f̃ (7)

where X̃ is Fourier transform of X (x j , η).
The local error Elocal(α�x, η) is defined as the square ampli-

tude of the difference between the LHS and RHS of Eq. (7) after
performing a Fourier transform:

Elocal(α�x, η) =
∣∣∣∣X̃(α�x, η) −

M∑

k = −N

ak exp(iαk�x)

∣∣∣∣
2

(8)

The total integrated error over the band of wave number
0 ≤ α�x ≤ κ is

Etotal =
∫ κ

0

∣∣∣∣X̃(α�x, η) −
M∑

k =−N

ak exp(iαk�x)

∣∣∣∣
2

d(α�x) (9)

It is possible to combine the traditional truncated Taylor series
in Eq. (4) with the optimized finite difference approximation in
Eq. (9). These free parameters can then be fixed into certain values
to minimize the integrated error Etotal:

∂ E

∂a1
= ∂ E

∂a3
= 0 (10)

Here Etotal is a function of the parameter κ and η, and the parameter
κ can be adjusted to the optimized overall results.

Optimized Wall Boundary Treatment
In this section, a new method for boundary treatment, which is

stable while it retains higher-order accuracy, is proposed:

V · n̂wall = ∂p

∂ n̂wall
= 0 (11)

The wall boundary condition (11) will be enforced by the ghost
values of pressure suggested by Tam et al.14 Most enforcement
points, however, are not on mesh points. Therefore, information
about the pressure gradient at these boundary points can only be
obtained by interpolation. In addition, their interpolation accuracy
must be at least higher than that used in high-order finite difference
schemes to avoid the errors from their interpolation. In this work,
a two-step process is carried out. The first step is the interpolation
process for the values of pressure normal to the surface, that is,
two–seven points. The next step is the optimizing process to deter-
mine ghost points of pressure, that is, one point, for satisfying wall
boundary condition in Fig. 1.

If a seven-point stencil finite difference method is used, the pro-
cess to obtain the values of pressure normal to the surface, that
is, the six interior interpolation pressure points 2–7, is as follows.
The procedure for determining the value of pressure at index 4 in
Fig. 1 is briefly introduced as an example. The values of pressure
in line A or B at time level n(a1–a7 or c1–c7) should be deter-
mined by high-order interpolation approaches described earlier as
shown in Fig. 2. The seven points a1–a7 in Fig. 2 are approximated
one dimensionally in the y direction and are calculated through the
high-order interpolation method suggested in this Note. Here, the
values of pressure at the unknown points, that is, points a1–a7, are
calculated by the seven-point approximation in Eq. (1), with either
central difference in the interior regions or backward difference in
the boundary regions, where the central differences are not applied



416 AIAA JOURNAL, VOL. 42, NO. 2: TECHNICAL NOTES

Fig. 1 Wall boundary region from a circular cylinder: �, interpolation
pressure points and •, ghost point.

Fig. 2 Interpolation process in a interior region:•, interpolation point
and �, extra points.

Fig. 3 Classification of wall boundary treatment: �, interpolated pres-
sure points and •, ghost point.

due to the existence of the rigid wall. The value of pressure at in-
dex 4 is obtained by using these values of pressure in points a1–a7
with the same approximation explained earlier. These interpolated
values of interior points in Fig. 1, that is, points 2–7, will be used
for the optimized wall boundary treatment. All of the procedures
could be developed and implemented automatically with a com-
puter program.

Because the boundary point might not be located on the grid, as
shown in Fig. 3, the ghost values for the wall boundary are expressed
as follows as described in the preceding section with an accuracy of

order O(�x4) if the methods described earlier are utilized:

∂ f

∂x
(xi + η�x) = 1

�x

7∑

j = 1

a j fi − 2 + j (12)

It is possible to combine the traditional truncated Taylor series
with a finite difference approximation so that coefficients a j can
easily be determined. The coefficient can be obtained from the trun-
cated Taylor series up to the order of (�x)4:
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(13)

Elocal(η, α�x) = |α�x · exp{i[α(η�x)]} − G(a j , α�x)|2 (14)

where G(a j , α�x) = [a1 exp(−iα�x) + a2 + a3 exp(iα�x) + a4

exp(2iα�x) + a5 exp(3iα�x) + a6 exp(4iα�x) + a7 exp(5iα�x)]
and κ = 1.1.

When Eq. (10) is applied, all of the coefficients in Eq. (12) are
determined. Finally Eqs. (11) and (12) provide ghost point of pres-
sure at index 1 in Fig. 1. The entire process is performed at time
level n, and then the variables ρ, u, v, and p are updated.

Numerical Applications
A. Reflection of Two-Dimensional Acoustic Waves

A test simulation was performed to validate the accuracy of the
schemes and wall boundary conditions for a problem involving
sound propagation and reflection. The acoustic disturbance is gen-
erated by an initial acoustic pulse and is governed by the linearized
Euler equations:

p = p̂ exp
((− ln(2)

{[
(x − xs)

2 + (y − ys)
2
]/

b2
}))

(15)

where the amplitude p̂, b, and position (xs, ys) are 0.1, 3�x ,
and (0.0, − 3.0), respectively. In the numerical simulation, the
mesh sizes are chosen to be �x = �y = 0.05 with a time step of
�t = 0.001. Figure 4 shows the propagation and the reflection of
acoustic pulse near the wall in the η = −0.9 case defined in Eq. (1)
and shown in Fig. 3.

B. Sound Scattering Problem
To show the accuracy of this treatment, the case of scattering of

a time-periodic acoustic source by a single cylinder is investigated.
All of the calculations are executed with the following conditions:
�x = �y = 1.0, �t = 0.01, and ω = 0.1π . Figure 5 shows the in-
stantaneous pressure contour of the scattering of the plane wave at
t = 200 and of the time-periodic acoustic wave at t = 195. Figure 5
shows a zero pressure contour of the two cases. We can find easily
that there is good agreement between the numerical results and the
exact solutions.
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Fig. 4 Reflection of acoustic pulse near the rigid wall η = −0.9 case;
pressure contour at time t = 3.5.

a)

b)

Fig. 5 Zero pressure contour: a) scattering of plane wave, t = 200 and
b) scattering of time-periodic acoustic wave, t = 195: ——, numerical
solution and —·—, analytic solution.

Conclusions
A newly developed Cartesian boundary treatment of solid sur-

faces for acoustic scattering and radiation problems has been
presented for use in conjunction with high-order finite differ-
ence schemes, in particular the seven-point stencil finite dif-
ference scheme.12 The acoustic modeling of scattering from
an infinitely long rigid cylinder is investigated to evaluate
the performance, effectiveness, and accuracy of this boundary
treatment.

The ghost values for the wall boundary condition are determined
so that the slip wall boundary condition is satisfied at the boundary
surface. All of the numerical simulations are performed on Carte-
sian coordinates and are compared with analytic solutions. There is
a good agreement between the numerical results and the exact so-
lutions for several standard benchmark problems.12,13 Furthermore,
this approximation is also efficient because the number of opera-
tions along the wall boundaries account for only a small part of the
overall computational load.
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